Logic Colloquium 2024

Special Session

Cyclic versions of arithmetic theories with inductive definitions

Lukas Melgaard

  Thursday, 14:40, J222 ! Live

We investigate the cyclic proof theory of extensions of Peano Arithmetic by (finitely iterated) inductive definitions. Such theories are essential to proof theoretic analyses of certain `impredicative’ theories; moreover, our cyclic systems naturally subsume Simpson’s Cyclic Arithmetic.

Our main result is that cyclic and inductive systems for arithmetical inductive definitions are equally powerful. We conduct a metamathematical argument, formalising the soundness of cyclic proofs within second-order arithmetic and appealing to conservativity. This approach is inspired by those of Simpson and Das for Cyclic Arithmetic, however we must further address a difficulty that the closure ordinals of our inductive definitions (around Church-Kleene) far exceed the proof theoretic ordinal of the appropriate metatheory (around Bachmann-Howard or Bucholz), and so explicit induction on their notations is not possible. For this reason, we rather rely on a formalisation of the theory of (recursive) ordinals within second-order arithmetic.

 Overview  Program